[ New messages · Members · Forum rules · Search · RSS ]
Page 1 of 11
Forum moderator: ProfVietanh 
Diễn đàn » Hóa học đại học và sau đại học » Tiếng Anh chuyên ngành hóa học (English for Special Purposes) » Lesson forty (Acetic acid)

Lesson forty
ProfVietanhNgày: Thứ ba, 2010-06-01, 12:11 PM | Tin nhắn # 1
Thượng úy
Chức vụ: Tổ trưởng chuyên môn
Tổng số bài viết: 160
Phần thưởng: 0
Danh tiếng: 5
Trạng thái: Offline
Acetic acid


Model of acetic acid

Acetic acid, also known as ethanoic acid, is an organic chemical compound with the formula CH3COOH best recognized for giving vinegar its sour taste and pungent smell. Pure, water-free acetic acid (glacial acetic acid) is a colourless liquid that attracts water from the environment (hygroscopy), and freezes below 16.7°C (62°F) to a colourless crystalline solid. Acetic acid is corrosive, and its vapour causes irritation to the eyes, a dry and burning nose, sore throat and congestion to the lungs. It is considered a weak acid due to the fact that at standard temperature and pressure the dissociated acid exists in equilibrium with the undissociated form in aqueous solutions, in contrast to strong acids, which are fully dissociated.

Acetic acid is one of the simplest carboxylic acids (the second-simplest, next to formic acid). It is an important chemical reagent and industrial chemical that is used in the production of polyethylene terephthalate mainly used in soft drink bottles; cellulose acetate, mainly for photographic film; and polyvinyl acetate for wood glue, as well as many synthetic fibres and fabrics. In households diluted acetic acid is often used in descaling agents. In the food industry acetic acid is used under the food additive code E260 as an acidity regulator.

The global demand of acetic acid is around 6.5 million tonnes per year (Mt/a), of which approximately 1.5 Mt/a is met by recycling; the remainder is manufactured from petrochemical feedstocks or from biological sources.


Phạm Bá Việt Anh

Department of Analytical Chemistry
Faculty of Chemistry
Hanoi National University of Education
Mobile - Tel: (84) 943 919 789
 
ProfVietanhNgày: Thứ ba, 2010-06-01, 12:16 PM | Tin nhắn # 2
Thượng úy
Chức vụ: Tổ trưởng chuyên môn
Tổng số bài viết: 160
Phần thưởng: 0
Danh tiếng: 5
Trạng thái: Offline
Chemical properties

Acidity
The hydrogen (H) atom in the carboxyl group (−COOH) in carboxylic acids such as acetic acid can be given off as an H+ ion (proton), giving them their acidic character. Acetic acid is a weak, effectively monoprotic acid in aqueous solution, with a pKa value of 4.8. Its conjugate base is acetate (CH3COO). A 1.0 M solution (about the concentration of domestic vinegar) has a pH of 2.4, indicating that merely 0.4% of the acetic acid molecules are dissociated.

The crystal structure of acetic acid shows that the molecules pair up into dimers connected by hydrogen bonds. The dimers can also be detected in the vapour at 120 °C. They also occur in the liquid phase in dilute solutions in non-hydrogen-bonding solvents, and to some extent in pure acetic acid, but are disrupted by hydrogen-bonding solvents. The dissociation enthalpy of the dimer is estimated at 65.0–66.0 kJ/mol, and the dissociation entropy at 154–157 J mol–1 K–1. This dimerisation behaviour is shared by other lower carboxylic acids.

Solvent
Liquid acetic acid is a hydrophilic (polar) protic solvent, similar to ethanol and water. With a moderate dielectric constant of 6.2, it can dissolve not only polar compounds such as inorganic salts and sugars, but also non-polar compounds such as oils and elements such as sulfur and iodine. It readily mixes with many other polar and non-polar solvents such as water, chloroform, and hexane. This dissolving property and miscibility of acetic acid makes it a widely used industrial chemical.

Chemical reactions
Acetic acid is corrosive to many metals including iron, magnesium, and zinc, forming hydrogen gas and metal salts called acetates. Aluminum, when exposed to oxygen, forms a thin layer of aluminum oxide on its surface which is relatively resistant, so that aluminum tanks can be used to transport acetic acid. Metal acetates can also be prepared from acetic acid and an appropriate base, as in the popular "baking soda + vinegar" reaction. With the notable exception of chromium(II) acetate, almost all acetates are soluble in water.

Mg(s) + 2CH3COOH(aq) → (CH3COO)2Mg(aq) + H2(g)
NaHCO3(s) + CH3COOH(aq) → CH3COONa(aq) + CO2(g) + H2O(l)

Acetic acid undergoes the typical chemical reactions of a carboxylic acid, such producing water and a metal ethanoate when reacting with alkalis, producing a metal ethanoate when reacted with a metal, and producing a metal ethanoate, water and carbon dioxide when reacting with carbonates and hydrogencarbonates. Most notable of all its reactions is the formation of ethanol by reduction, and formation of derivatives such as acetyl chloride via nucleophilic acyl substitution. Other substitution derivatives include acetic anhydride; this anhydride is produced by loss of water from two molecules of acetic acid. Esters of acetic acid can likewise be formed via Fischer esterification, and amides can also be formed. When heated above 440°C, acetic acid decomposes to produce carbon dioxide and methane, or to produce ketene and water.

Detection
Acetic acid can be detected by its characteristic smell. A colour reaction for salts of acetic acid is iron(III) chloride solution, which results in a deeply red colour that disappears after acidification. Acetates when heated with arsenic trioxide form cacodyl oxide, which can be detected by its malodorous vapours.


Phạm Bá Việt Anh

Department of Analytical Chemistry
Faculty of Chemistry
Hanoi National University of Education
Mobile - Tel: (84) 943 919 789
 
ProfVietanhNgày: Thứ ba, 2010-06-01, 12:17 PM | Tin nhắn # 3
Thượng úy
Chức vụ: Tổ trưởng chuyên môn
Tổng số bài viết: 160
Phần thưởng: 0
Danh tiếng: 5
Trạng thái: Offline
Production

Acetic acid is produced both synthetically and by bacterial fermentation. Today, the biological route accounts for only about 10% of world production, but it remains important for vinegar production, as many of the world food purity laws stipulate that vinegar used in foods must be of biological origin. About 75% of acetic acid made for use in the chemical industry is made by methanol carbonylation, explained below. Alternative methods account for the rest.

Total worldwide production of virgin acetic acid is estimated at 5 Mt/a (million tonnes per year), approximately half of which is produced in the United States. European production stands at approximately 1 Mt/a and is declining, and 0.7 Mt/a is produced in Japan. Another 1.5 Mt are recycled each year, bringing the total world market to 6.5 Mt/a. The two biggest producers of virgin acetic acid are Celanese and BP Chemicals. Other major producers include Millennium Chemicals, Sterling Chemicals, Samsung, Eastman, and Svensk Etanolkemi.


Phạm Bá Việt Anh

Department of Analytical Chemistry
Faculty of Chemistry
Hanoi National University of Education
Mobile - Tel: (84) 943 919 789
 
Diễn đàn » Hóa học đại học và sau đại học » Tiếng Anh chuyên ngành hóa học (English for Special Purposes) » Lesson forty (Acetic acid)
Page 1 of 11
Search:

Powered by uCoz | Website Builder Templates | Designed by game cheats